ĆWICZENIE Nieściśliwy opływ profilu NACA 23012

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się ze sposobem modelowania opływu wokół profili lotniczych oraz obliczania współczynników sił i momentów aerodynamicznych.

Opis problemu:

Wyznaczenie opływ wokół profilu NACA 23012 o długości cięciwy równej 1 m ustawionym pod kątem natarcia $\alpha = 4$ stopnie. Opływającym czynnikiem jest powietrze o ciśnieniu p=100000 Pa, stałej gęstości ρ =1.225 kg/m³ oraz prędkości V=55.55 m/s (200 km/h).

Aby zrealizować warunki opływu

"nieograniczonego" wymiary obszaru

obliczeniowego muszą być odpowiednio duże w stosunku do cięciwy profilu. Założono, że we wszystkich kierunkach wymiary te będą równe dziesięciokrotnej wartości cięciwy.

TWORZENIE GEOMETRII MODELU OBLICZENIOWEGO W PROGRAMIE GAMBIT

Uruchomić **GAMBITA**, rozpocząć nową sesję o nazwie "profil".

1) Zaimportować punkty z pliku N23012.dat File > Import > Vertex Data

Na ekranie pojawią się zaimportowane punkty(rys. 1). Ponieważ w tylnej części jest ich zbyt dużo, należy skasować część z nich. Powiększania obrazu dokonujemy przez wciśnięcie CTRL oraz przeciągając okno powiększenia prawym przyciskiem myszy.

Uwaga: punkty nr 3 i 4 (na krawędzi spływu) nie znajdują się w tym samym miejscu (patrz dalej)

Rys. 1 Punkty zaimportowane z pliku N23012.dat

2) Skasować nadmiarowe punkty, aby pozostały tylko te pokazane na Rys. 2.

Rys. 2. Pozostawione punkty z importu 3) Korzystając z opcji Geometry > Edge > Create Edge from Vertices (NURBS) połączyć górne punkty profilu począwszy od punktu nr 2 do nr 3, nadając krawędzi nazwę "profil_gora" a następnie dolne punkty, nr 2 do nr 4 nadając krawędzi nazwę "profil_dol".

4) Usunąć niepotrzebne (białe) punkty wykorzystane do utworzenia krawędzi

Geometry > Vertex > Delete Vertices

5) Połączyć tylne punkty profilu i nadać powstałej krawędzi nazwę "Profil_tyl"

Geometry > Edge > Create Straight Edge

6) Następnie należy utworzyć dodatkowe punkty o numerach 1, 5, 6, 7, 8.Współrzędne tych punktów podano poniżej.

Nr Współrzędna X i Y

-9 0 1 10 1 -10

1

5

6

7 -67

8 -6-7

Tworzenie krawędzi:

7) Połączyć odcinkami prostymi następujące punkty: 1 z
2, 3 z 5, 4 z 6 i nadać im nazwy (np. kr1-2, kr3-5, kr4-6)

Geometry > Edge > Create Straight Edge

8) Połączyć łukiem , przechodzącym przez trzy punkty następujące punkty: 1-7-5 oraz 1-8-6 nadając im nazwy (np. kr1-7-5, kr1-8-6)

Geometry > Edge > Create Conic Arc

9) Usunąć niepotrzebne (białe) 2 punkty wykorzystane do utworzenia łuków

Geometry > Vertex > Delete Vertices

Rys. 3. Krawędzie obszaru obliczeniowego (strzałki pokazują kierunki zagęszczenia siatki)

Tworzenie powierzchni:

10) Utworzyć dwie powierzchnie w oparciu o krawędzie:

1-2, 2-3, 3-5, 1-7-5 oraz 1-2, 2-4, 4-6, 1-8-6

Geometry > Face > Create Face from Wireframe

11) Utworzyć trzy powierzchnie poprzez rozciągnięcie krawędzi

5-3, 3-4 oraz 4-6

Geometry > Face > Sweep Edges

W oknie **Sweep Edges** w polu krawędzi **Edges** wskazać trzy krawędzie 5-3, 3-4, 4-6, poniżej w menu ścieżki **Path** zmienić ustawienie ścieżki wyciągnięcia z krawędzi (**Edge**) na wektor (**Vector**), nacisnąć przycisk **Defi**-

ne celem określania wektora wyciągnięcia. W oknie Vector Definition w ramce kierunek (Direction) wybrać dodatni kierunek osi x (X Positive). Włączyć opcję podawania długości wektora (Magnitude) i w polu po prawej wpisać 10. Potwierdzić ustawienia (Apply) i zamknąć (Close). W oknie Type pozostawić sztywny sposób wyciągania (Rigid), zatwierdzić wybór (Apply) i zamknąć okno (Close).

W rezultacie otrzymamy 5 powierzchni. Na tym tworzenie modelu geometrycznego jest zakończone.

Tworzenie siatki obliczeniowej.

12) Z panelu **Operation** wybrać opcję **Mesh**. W celu utworzenia siatki dla warstwy przyściennej należy najpierw posiatkować górną i dolną krawędź profilu. Należy więc wybrać opcję siatkowania linii , oraz tworzenie siatki na liniach.

Mesh > Edge > Mesh Edges

Podzielić górną i dolną krawędź profilu na 25 podziałów, z zagęszczeniem 0.9 w kierunku krawędzi natarcia (w razie potrzeby użyć przycisku **Invert**).

Tworzenie siatki warstwy przyściennej:

13) Wybrać opcję siatki warstwy przyściennej Mesh > Boundary Layer > Create Boundary Layer

W polu **Attachment** wskazać górną krawędź profilu (linia zmieni swój kolor na czerwony, a także pojawi się strzałka, pokazująca kierunek tworzenia siatki - jest to możliwe tylko dla krawędzi brzegowych a nie wewnętrznych). Pozostawić włączony podgląd siatki (**Show**), w panelu **Definition** zmienić algorytm tworzenia siatki (**Algorithm**) z jednorodnego (**Uniform**) na przyrostowy (**Aspect Ratio Based - First**). Wpisać wartość **First Percent** =1, czynnik siatki **Growth Factor** (**b**/a) ustawić na 1.2, liczbę rzędów siatki (**Rows**) na 10 (największa możliwa liczba rzędów do utworzenia to 20).

Schemat przejścia **Transition Pattern** pozostawić 1:1, sprawdzić podgląd siatki naciskając **Return** (podgląd siatki warstwy jest koloru pomarańczowego). Można też sprawdzić, jak wyglądają schematy 4:2, 3:1 i 5:1. Zatwierdzić poprawny układ siatki naciskając **Apply** (siatka zmieni kolor na biały) i zamknąć okno (**Close**). **14**) W identyczny sposób stworzyć siatkę dla dolnej krawędzi profilu.

Rys. 4 Siatka dla warstwy przyściennej

15) Wykonać siatkowanie pozostałych linii. Należy je podzielić w sposób następujący):

- łuk 1-7-5: 25 podziałów równomiernie (Successive Ratio = 1)
- łuk 1-8-6: 25 podziałów równomiernie
- odcinek 3-4 oraz jego odpowiednik na prawo: 3 podziały równomiernie
- odcinek 1-2: 60 podziałów z zagęszczeniem 0.9
- odcinek 3-5 oraz jego odpowiednik na prawo: 60 podziałów z zagęszczeniem (Successive Ratio) = 0.9 (kierunek zagęszczenia pokazują strzałki na rys.2)
- odcinek 4-6 oraz jego odpowiednik na prawo: 60 podziałów zagęszczenie 0.9
- wszystkie cztery odcinki poziome, powstałe po wyciągnięciu trzech krawędzi pionowych: 30 podziałów z zagęszczeniem 1.1 w kierunku profilu.

16) Stworzyć siatkę na wszystkich 4 powierzchniach (pamiętać o wąskim pasku za profilem) za wyjątkiem powierzchni opartej o punkty 1-8-6-4-2-1 (lewa, dolna powierzchnia). Użyć elementów czworokątnych typu **Quad/Map**.

Mesh > Face > Mesh Faces

17) Pozostałą powierzchnię 1-8-6-4-2-1 podzielić (dla urozmaicenia) za pomocą elementów trójkątnych **Tri/Pave**. Gotowa siatka powinna wyglądać następująco:

Rys. 5 Gotowa siatka obszaru obliczeniowego

18) Ustawienie typu solvera Solver > Fluent 5/6

19) Określenie warunków na brzegach oraz wewnątrz obszaru obliczeniowego

W panelu **Operation** wybrać przycisk **Zones**, wybrać opcję tworzenia warunków brzegowych (**Specify Boundary Types**). Nadać typy warunków brzegowych i nazwy (**Uwaga:** w nazwach nie może znajdować się odstęp, trzeba stosować znak _ lub -). Nie nadawać żadnego warunku dla odcinka 3-4. Będzie można później zaobserwować, że każdemu niezadeklarowanemu brzegowi Fluent nadaje automatycznie warunek typu ściana (**Wall**).

- łuk 1-7-5, łuk 1-8-6 oraz górna i dolna krawędź pozioma: Velocity_inlet i nazwa "naplyw"
- wszystkie 3 krawędzie pionowe na końcu obszaru obliczeniowego: Pressure_outlet i nazwa "odpływ". Uwaga: Warunek tego typu jest konieczny, aby można było zdefiniować ciśnienie na brzegu obszaru obliczeniowego.

Podobnie należy zadeklarować obszar obliczeniowy, składający się ze wszystkich pięciu powierzchni i nadać mu nazwę "powietrze". **Zones > Specify Continuum Types**

20) Zapisać wyniki pracy

File > Save (lub **Save As**, jeśli projekt dotychczas nie miał nazwy)

21) Wyeksportować gotową siatkę

Siatkę eksportujemy jako plik dwuwymiarowy (przycisk 2-D Mesh wciśnięty!):

File > Export > Mesh

Sprawdzić czy w polu **Transcription** pojawił się komunikat, że siatka została poprawnie zapisana (**mesh was succesfully written to "nazwa"**), a następnie wyjść z Gambita (**File > Exit**).

OBLICZENIA PRZEPŁYWOWE W PRO-GRAMIE FLUENT

 Uruchomić FLUENTA w wersji dwuwymiarowej o podwójnej precyzji obliczeń (Dimension: 2D, Options: Double Precition) wczytać utworzony w Gambicie plik z siatką: Read a file > Mesh > nazwa_siatki.msh

2) Sprawdzić skalowanie siatki:

General > Mesh > Scale (ponieważ siatka została utworzona w metrach, nie jest potrzebne jej skalowanie).

3) Sprawdzić poprawność siatki:General > Mesh > Check

4) Ustawienie kąta natarcia profilu:

Ustawienie kąta natarcia profilu można dokonać albo przez obrót całej siatki, albo przez wstawienie odpowiednich składowych prędkości (X- oraz Y-Component of Flow Direction) w polu wartości brzegowych dla Pressure Far-Field. Ponieważ ten pierwszy sposób jest prostszy, skorzystamy właśnie z niego:

Mesh > Rotate

W oknie **Rotation Angle (deg)** wstawić wartość – 4 (aby obrócić siatkę w kierunku zgodnym z ruchem wskazówek zegara, należy podać wartości ujemne), potwierdzić wybór naciskając przycisk **Rotate**).

Obejrzeć siatkę po obrocie:

General > Mesh > Display

W polu **Surfaces okna Mesh Display** zaznaczyć wszystko, pozostałe ustawienia pozostawić bez zmian. Nacisnąć **Display**.

Wygląd siatki po obrocie

5) Ustawienia solvera przepływowego: General > Solver

- Solver rozprężony (Type Pressurey Based),
- Przepływ ustalony (Time Steady)
- Prędkość (Velocity Formulation: Absolute)
- Model dwuwymiarowy płaski (2D Space: Planar)

6) Ustawienie modelu:

Na początku obliczenia przeprowadzimy dla modelu płynu lepkiego a w drugiej części dla nielepkiego, po czym porównamy uzyskane wyniki.

Models > Viscous > Edit

Zmienić model lepkości z laminarnego (**Laminar**) na lepki turbulentny (**Spalart-Allmaras**).

7) Ustawienie własności płynu:

Materials > Fluid > Create/Edit

Ustawić materiał (**Properties**) na powietrze (**Air**) o stałej gęstości (**Density**: **constant**) Potwierdzamy wybór (**Change/Create**) i zamykamy okno (**Close**)..

8) Określenie warunków pracy:

Cell Zone Conditions > (powietrze) > Operating Conditions

W oknie **Operating Conditions** ustawić wartość ciśnienia odniesienia (**Operating Pressure**) na **100000 Pa** i potwierdzić wybór (**OK**).

9) Określenie warunków brzegowych: Boundary Conditions Zone > naplyw > Edit Zakładka Momentum

- Velocity specification Method: Magnitude and Direction
- Reference Frame: Absolute
- Velocity Magnitude: **55.55 m/s**
- X-Component of Flow Direction = 1
- Y-Component of Flow Direction = 0

Pole Turbulence: ustawienia pozostawiamy bez zmian

Boundary Conditions Zone > odplyw > Edit Zakładka **Momentum**

- Gauge Pressure = 0 (Pascal)
- Backflow Direction Specification Method: Normal to Boundary

Pole **Turbulence:** ustawienia pozostawiamy bez zmian

10) Ustalenie warunków referencyjnych:

Po wykonaniu obliczeń niezbędne będzie stworzenie wykresu współczynnika ciśnienia C_p określonego wzorem:

$$c_p = \frac{p - p_{\infty}}{q_{\infty}} = \frac{p - p_{\infty}}{\frac{p_{\infty}V_{\infty}^2}{2}}$$

gdzie: p - ciśnienie statyczne w danym punkcie pola, p_{∞} - ciśnienie referencyjne, równe ciśnieniu statycznemu w przepływie swobodnym, q_{∞} - referencyjne ciśnienie dynamiczne, równe ciśnieniu dynamicznemu w przepływie swobodnym.

Ponieważ do poprawnego obliczenia współczynnika ciśnienia niezbędne są parametry referencyjne, dlatego też należy je podać. W naszym przypadku jako warunki referencyjne należy wstawić wartości występujące na brzegu obszaru obliczeniowego: **Reference Values > Compute From > pole_dalekie**

Sprawdzić, czy parametry referencyjne mają następujące wartości:

- powierzchnia (**Area**) = 1 m^2
- gęstość (**Density**) = $1,225 \text{ kg/m}^3$
- ♦ głębokość (**Depth**) = 1 m
- długość (**Length**) = 1 m
- ciśnienie (**Pressure**) = 0 Pa
- temperatura (**Temperature**) = 288.16 K
- ♦ prędkość (Velocity) = 55.55 m/s
- ♦ lepkość kinematyczna (Viscosity) = 1.7894 e-5
- wykładnik adiabaty (Ratio Of Specific Heats) = 1.4

11) Ustalenie metody rozwiązania (Solution

Methods) – wybieramy ustawienia domyślne (Default)

- Pressure-Velocity Coupling Scheme SIM-PLE
- Metoda dyskretyzacji (Spatial Discretization)
 - Gradient Least Squares Cell Based
 - Pressure Standard
 - Momentum First Order Upwind
 - Modified Turbulent Viscosity First Order Upwind

– wybieramy ustawienia domyślne (**Default**)

13) Ustawienie wielkości reszt: Monitors > Residuals > Edit

Wyłączyć opcję wyświetlania histogramów dla rezydułów (**Print to Console**), zaznaczyć opcję **Plot**. Zadać wartości rezydułów dla równania ciągłości, równania energii oraz składowych prędkości na poziomie 10^{-4} a dla turbulencji (**nuts**) pozostawić na poziomie 10^{-1}

³. Potwierdzić wybór (**OK**).

14) Inicjalizacja rozwiązania (Solution Initialization):

Zainicjalizować obliczenia z warunków napływu (**Compute From > naplyw**).

Reference Frame: zaznaczyć opcję **Relative to Cell Zone**

W oknie **Initial Values** pojawią się wartości:

Gauge pressure (Pascal) = 0**X Velocity (m/s)** = 55.55

Y Velocity $(\mathbf{m/s}) = 0$

Modyfied Turbulence Viscosity $(m^2/s) = 0.001$ Wykonać inicjalizację (**Initialize**).

15) Wykonanie obliczeń (Run Calculation)

Ustawić liczbę iteracji (**Number of Iterations**) na 300, Wykonać obliczenia (**Calculate**).

Po osiągnięciu zadanej liczby iteracji zapisać wyniki (np. pod nazwą "4st-lepki") a następnie przystąpić do analizy wyników obliczeń.

WIZUALIZACJA WYNIKÓW OBLICZEŃ

1) Wizualizacja pól ciśnienia, prędkości i turbulencji (Graphics and Animations):

Contours > Set Up > Contours of Pressure (Static Pressure)

Pole ciśnień (różnice w stosunku do Operating Pressure)

Contours > Contours of Velocity (Magnitude)

12) Kontrola rozwiązania (Solution Controls)

Contours > Contours of Turbulence (Turbulent Viscosity)

Pole turbulencji

2) Wizualizacja wektorów predkości (Graphics and Animations):

Vectors > Set Up > Vectors of Velocity Ustawienia dodatkowe: Color by Velocity, Velocity Magnitude; Scale = 20; Skip = 1

Mapa wektorów prędkości (zwrócić uwagę na ślad aerodyn.)

3) Wykres rozkładu ciśnienia na powierzchni profilu

Plots > XY Plot > Set Up

W oknie **Plot Direction** ustawić **X=1** oraz **Y=0**. W oknie **Solution XY Plot** ustawić na osi y (**Y Axis Function**) ciśnienie (**Pressure**) i poniżej **Static Pressure**. W oknie **X Axix Function** pozostawić **Direction Vector**. W oknie wyboru powierzchni, na których kreślony będzie wykres (**Surfaces**) wskazać dolny i górny obrys profilu o nazwie "**go-ra_profilu**" i "**dol_profilu**", następnie wcisnąć przycisk **Plot**.

Rozkład ciśnienia na powierzchni profilu

Należy zwrócić uwagę na podciśnienia na górnej powierzchni oraz nadciśnienia na dolnej.

4) Wykres współczynnika ciśnienia dla górnej i dolnej krawędzi profilu:

Plots > XY Plot > Set Up

W polu funkcji (**Y** Axis Function) ustawić ciśnienie (**Pressure**) w oknie górnym oraz współczynnik ciśnienia (**Pressure Coefficient**) poniżej. W polu wyboru powierzchni (**Surfaces**) wskazać jak poprzednio dolny i górny obrys profilu "gora_profilu" i "dol_profilu". Wcisnąć przycisk **Plot**.

W celu sformatowania osi (ponieważ oś współczynnika ciśnienia powinna mieć odwrócone wartości), należy skorzystać z opcji formatowania osi (**Axes**). Po otwarciu okna **Axes – Solution XY Plot** najpierw wybieramy oś **Y**, potem wyłączamy opcję **Auto Range** a następnie w polu zakresów (**Range**) jako wartość **Minimum** wpisujemy 1.25 a jako wartość **Maximum** wpisujemy –1.25. Potwierdzamy ustawienia (**Apply**).

Z kolei klawisz krzywych (**Curves**) umożliwia formatowanie krzywych na wykresie, na które składa się grubość, kolor i rodzaj linii, jak również znaczników krzywych, ich koloru i wielkości. Ustawić linię ciągłą z punktami. Potwierdzić wybór przyciskiem **Apply** (uwaga: na wykres składają się 2 krzywe, dla górnej i dolnej części profilu). Narysować wykres (**Plot**).

Wykres współczynnika ciśnienia na górnej i dolnej powierzchni profilu dla modelu płynu lepkiego i $\alpha=4^{\circ}$.

Następnie należy zapisać wykres w postaci danych liczbowych na dysku. W tym celu należy w oknie **Solution XY Plot** zaznaczyć opcję zapisu do pliku **Write To File** (przycisk kreślenia wykresu **Plot** zmienił się na przycisk zapisu do pliku **Write**). Należy go zapisu do pliku **Write**). Należy go nacisnąć a następnie podać lokalizację i nazwę pliku z danymi (np. Cp-4st-lepki).

5) Siły, momenty i współczynniki aerodynamiczne:

Raport > Forces > Set Up

W panelu wyboru (**Options**) zaznaczyć siły (**Forces**), w oknie **Wall Zones** zaznaczyć wszystkie krawędzie profilu (górną, dolną oraz tylną). Jeśli chcemy wyświetlić wyniki dla siły oporu, to w polu **Force Vector** powinny być ustawione wartości **X=1** oraz **Y=0** (dla siły nośnej odpowiednio X=0 oraz Y=1). Po naciśnięciu klawisza **Print** otrzymujemy dla siły oporu (**Force vector 1 0 0**) następujące wartości

Forces - Direction Vector Zone profil_tyl profil_dol profil_gora		(1 0 0) Forces (n) Pressure -0.90763732 48.145826 10.995788		Viscous 4.0529631e-07 5.805441 6.0661084	Total -0.90763691 53.951267 17.061897
Net		58.2339	77	11.87155	70.105527
Coefficients Pressure -0.00048021767 0.025473255 0.0058177112	Viscous 2.1443637e-10 0.0030715742 0.0032094895		Total -0.00048021746 0.028544829 0.0090272008 		
0.030810748	0.00628	310639	0.03	7091812	

Należy zwrócić uwagę, że ponieważ rozpatrujemy model płynu lepkiego, to siły lepkości oraz odpowiednie współczynniki nie są równe 0. Podobnie postępujemy dla siły nośnej (**Force vector 0 1 0**).

Moment:

W polu **Options** wybieramy **Moments** a w polu **Moment Center** wpisujemy **X=0** oraz **Y=0**. Po naciśnięciu przycisku **Print** odczytujemy wartości momentu.

Środek parcia:

W polu **Options** wybieramy **Center of Pressure** i sprawdzamy, czy w polu **Coordinate** współrzędn **Y** ma wartość =0. Po naciśnięciu przycisku **Print** odczytujemy:

Center of Pressure - Se	t Coordinate y = 0 (m)
Zone	×
profil_tyl	3.5352231e-06
profil_dol	0.074324559
profil_gora	0.31295184
Net	0.29133873

Oznacza to, że środek parcia leży na osi x w odległości 0.2913 m (czyli ok. 0.29 cięciwy) od noska. 6) Sprawdzenie poprawności warunku brzegowego

W tym celu wykonamy wykres przebiegu prędkości a) oraz ciśnienia b) na brzegach obszaru obliczeniowego. a) przebieg prędkości

Przebieg prędkości na brzegu obszaru obliczeniowego

Jak widać z rysunku, na granicach napływu prędkości są dokładnie zachowane. Natomiast na granicach odpływu różnice prędkości nie przekraczają 0.2 m/s poza obszarem śladu aerodynamicznego, gdzie sięgają 1.5 m/s. Dla uzyskania mniejszych różnic należałoby zwiększyć obszar obliczeniowy.

Przebieg ciśnienia na brzegu obszaru obliczeniowego

Jak widać z rysunku, ciśnienia są dokładnie zachowane tylko na granicach odpływu, gdzie były definiowane. Natomiast na granicach napływu różnice ciśnień dochodzą do 30 Pa.

7) Zapisanie wyników obliczeń:

Zachować dane z obliczeń dla modelu płynu lepkiego: Write a file > Case & Data

Zachować dane np. pod nazwą "4st-lepki.cas"

8) Obliczenia dla innych kątów natarcia:

Obracając siatkę w podany na początku sposób, wykonać obliczenia dla kątów natarcia profilu $\alpha = 8^{\circ}$ oraz $\alpha = 0^{\circ}$, zapisując rozkłady współczynnika ciśnienia dla każdego kąta natarcia.

Porównanie wyników:

W celu otrzymania wykresu porównawczego należy w oknie **Solution XY Plot** wczytać w okno **File Data** kolejne 3 pliki z danymi za pomocą przycisku **Load File**. Następnie należy sformatować wykres i wyświetlić go na ekranie (opcja **Write To File** musi być wyłączona):

Porównanie wartości współczynników ciśnienia na górnej i dolnej powierzchni profilu dla modelu płynu lepkiego i kątów natarcia $\alpha=0^{\circ}$ (linia zielona i granatowa), $\alpha=4^{\circ}$ (linia niebieska i różowa) oraz $\alpha=8^{\circ}$ (linia czarna i czerwona)

9) Obliczenia dla modelu płynu nielepkiego:

W dalszej części ćwiczenia (jeśli czas na to pozwoli) należy, bazując na uzyskanych wynikach dla płynu lepkiego, przeprowadzić obliczenia dla modelu nielepkiego (**Inviscid**) I kąta natarcia α =4°. Wykonać 300 iteracji i zakończyć obliczenia, nawet jeśli zadana zbieżność nie zostanie osiągnięta. Zapisać wynik obliczeń pod zmienioną nazwą oraz wykonać i zapisać wykres współczynników ciśnienia na dolnej i górnej powierzchni profilu.

Porównanie wyników:

W celu otrzymania wykresu porównawczego należy postępować podobnie jak w przypadku różnych kątów natarcia.

Porównanie wartości współczynników ciśnienia na górnej i dolnej powierzchni profilu przy kącie natarcia α =4° dla modelu płynu nielepkiego (linie ciągłe) oraz lepkiego (punkty)

10) Zakończenie pracy z Fluentem:

Należy zapisać model obliczeniowy wraz z wynikami pod wybrana nazwą a następnie zamknąć **Fluenta**. Jeśli wyniki nie zostały zapisane, Fluent przypomni o tym komunikatem (**Warning: OK. to quit?**).